Celtic-Plus Event
28-29 April 2016, Stockholm

The Smart Sensor
& Semiconductor NVM Switch.

Prof. Yunsik Lee
www.unist.ac.kr
What makes IoT success?

- Wearable computing
- Home Automation
- Gesture sensing controller
- Bio-Measurement
- Machine-2-machine
- Bluetooth® Low Energy
- Sensor Hubs
- Smart Sensors
- Automotive
- Sensor Network
- Smart Power Grid
- Wireless connectivity
Organisation Profile

- Open: 2009.03.
- Korean Government Funded
- 10 Schools, 23 Tracks,
- 400 Faculty, 5,000 Students
- US152M$ Budget for Schools
Almost all RF/internet protocols need 32-bit MCU to run!

Wireless Connectivity Unit:
- WiFi
- GPS
- BT
- Proprietary RF
- 3G/4G
- VoLTE
- Zigbee...

Data processing
- Flow control
- IO control
- Basic Data analysis
- Data encryption

IoT Device

Processor Unit:
- Microprocessor
- Microcontroller
- DSP
- FPU...

I/O Unit:
- Sensors
- I/Os
- Displays...

thermal
pressure
G-sensor
....
Proposal Introduction / 1. sensor

☞ World class CMOS based smart gas sensor, prototype available at 2017.
☞ Joint R&D development and business.
Configurable device (FPGA) is ideal for future!

SW driven semiconductor/ US6B$ market
R&D on the device switch (NVM)
Seeking partner to joint R&D!

- **Function**: Nonvolatile, reprogrammable, solid-electrolyte switch
- **Performance Target** (SRAM switch)
 - 1/30 area (4F² vs. 120F²)
 - 1/40 turn-on resistance (50Ω vs. 2KΩ)
- **Current Statue**
 1. **1st Gen.**
 - Based on Cu₂S
 - 1 month data retention time
 2. **2nd Gen.**
 - Based on Ta₂O₅
 - Improved turn-on voltage
 - 10 year retention time
 - Compatible with standard logic process

Features of Cu₂S solid-electrolyte switch

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cu₂S NanoBridge</th>
<th>Meet the demand for programmable logic?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON resistance</td>
<td>OK (<100Ω)</td>
<td></td>
</tr>
<tr>
<td>Switch size</td>
<td>OK (4F²)</td>
<td></td>
</tr>
<tr>
<td>Switching speed</td>
<td>OK (<10μsec)</td>
<td></td>
</tr>
<tr>
<td>Cycling endurance</td>
<td>OK (10⁻³–10⁻⁵)</td>
<td></td>
</tr>
<tr>
<td>Turn-on voltage</td>
<td>NG (~0.2V)</td>
<td></td>
</tr>
<tr>
<td>Retention</td>
<td>NG (<3 month)</td>
<td></td>
</tr>
<tr>
<td>Process compatible</td>
<td>NG</td>
<td></td>
</tr>
<tr>
<td>Switching current</td>
<td>NG (>3mA)</td>
<td></td>
</tr>
</tbody>
</table>

Current Statue

- **1st Gen.**
 - Based on Cu₂S
 - 1 month data retention time
- **2nd Gen.**
 - Based on Ta₂O₅
 - Improved turn-on voltage
 - 10 year retention time
 - Compatible with standard logic process

Parameter Name

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Cu₂S switch</th>
<th>Ta₂O₅ switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON resistance</td>
<td>OK (<100Ω)</td>
<td>OK (<100Ω)</td>
</tr>
<tr>
<td>Switch size</td>
<td>OK (4F²)</td>
<td>OK (4–8F²)</td>
</tr>
<tr>
<td>Switching speed</td>
<td>OK (<10μsec)</td>
<td>OK (<100μsec)</td>
</tr>
<tr>
<td>Cycling endurance</td>
<td>OK (10⁻³–10⁻⁵)</td>
<td>OK (10⁻³)</td>
</tr>
<tr>
<td>Switching voltage</td>
<td>NG (~0.2V)</td>
<td>OK (>1V)</td>
</tr>
<tr>
<td>ON-state duration</td>
<td>NG (<3 month)</td>
<td>OK (>10 years)</td>
</tr>
<tr>
<td>Turn-off current</td>
<td>NG (>3mA)</td>
<td>Allowable (~5mA)</td>
</tr>
<tr>
<td>Process Compatibility</td>
<td>NG</td>
<td>OK</td>
</tr>
</tbody>
</table>
For more information and for interest to participate please contact:

Prof. Yunsik Lee/UNIST
Email: leeys@unist.ac.kr
Phone: (+82)52-217-2112
Addr. :
50 UNIST-gil, Eonyang-eup, Ulju-gun,
Ulsan City, Korea/ zip 44919
web: www.unist.ac.kr